
N0o-164 o

SCAN LINE GRAPHICS GENERATION
ON THE MASSIVELY PARALLEL PROCESSOR

z

_hnE. Dorb_d

NASA/Goddard Space Flight Center/635
Greenbelt, MD 20771

ABSTRACT

This paper describes how we have implemented a scan line
graphics generation algorithm on the Massively Parallel Proces-
sor (MPP). Pixels are compute in parallel and their results are

applied to the Z buffer in large groups. To perform pixel value
calculations, facilitate load balancing across the processors and
apply the results to the Z buffer efficiently in parallel requires
special virtual routing (sort computation J_) techniques devel-
oped by the author especially for use on single-instruction

multiple-data (SIMD) architectures.

Keywords: Graphics, scanline, Z-buffer, sorting, sort computa-
tion, SIMD, massively parallel, MPP, load balancing.

INTRODUCTION

A scan line graphics generation algorithm basically determines
the brightness of pixels in a simulated 3-D scene a scan line at a
time. The brightness value of a pixel is based on the surface

brightness of simulated polygon which would be seen through
the pixel. Triangles are the polygons used here. Only the triangle
nearest the pixel on the simulated viewing screen will be seen
through the pixel. Therefore a Z buffer is setup to accumulate the
values of the closest polygons to the viewing screen. It is actually
not necessary to only process one scan line at a time. On the MPP,
a subset of triangles at a time are processed for all scan lines that

these triangles cover. This is done by projecting each triangle
onto the viewing screen and determining which scan lines it
covers. Then the pixels of each scan line that the triangle covers
is determined. This results in pixels of different values and
distances from the viewing screen which are loaded into the Z

buffer. When all triangles are processed the Z buffer can be
displayed as an image.

To efficiently compute pixel values in parallel an efficient load

balancing method was developed so as many processors as
possible could be kept busy. This is of importance when greater
parallelism can be realize by duplicating data into more proces-
sors. This is made complex when it is determined that data in
certain processors is of no more computational use, randomly

leaving processors without work to do. Therefore the data must
be moved in such a way that it is known that when the data is slid
to new processors it will not be written over useful data. This

movement or compression is done by sorting. Although effi-
ciency of processor usage is of primary interest here, efficiency
of data movement is also of importance. Therefore the ineffi-
ciencies in the use of sorting are also considered. This has
prompted the modification of the sorts used. This involves a

preprocessing (scou.0 step which determines how much of the

sort is necessary to provide sufficient contiguous space to dupli-
cate the data. Once this has been determined a sort is used to

compress the data which can be terminated early based on the
information derived by the scout step. This then allows one the

ability to reasonably efficiently keep as many processors as
possible busy,

PROJECTION CALCULATION

The projection calculation converts the three coordinates of the

three comers of a triangle in a 3 dimensional viewing space into
two coordinates on the viewing screen and a range from the view
point. Given the coordinates of the triangle (X, Y_, Z_, X 2,Ya,

Zv X_,Y_, Z3), the coordinates of the view point (Xv, Yv, Zv), and
the projected coordinates (X'j, Y't, R1,X'2, Y'2, R2, X',, Y'3, Ph
) the following equations do the conversion from 3-D coordinates

to 2-D projected coordinates. The first set of equations rotates the
triangles in space so that the viewing axis lines up with the Z axis.
Thus the view point will lie along the Z axis.

X"t=Xl*x + Z_*z. Y",=Y_.

Z _-X_* z, x,

X"v--0, Y"v=Yv, and /. v=V Yv+-'-v,

where X py,, and z are normalized values of Xv, Yv, and _.

X,,,i=X,,t, y,,,t=y,'t*y" + Z"i*z",,

Z"', = Y", * z" - Z"_* y".,

where y'" and z", are normalized values of Y"v, and Z"v.

U.s. Government Work. Not protected by
U.S. copyright.

327

Thus the rotated coordinates of a triangle is X"' t, Y"' t,Z'". X"' 2,
Y"'2, Z"'2, X'"3, Y"'3, and Z"' r The rotated triangles are
projected on to the screen which is the distance R from the view
point. The following equations give the values for X', Y', and R'
for each comer of a triangle.

Rv='_v+Yv+Zv ,

and R'--'_(X'"-X02+(Y'"-Y_)2+(Z'"-Z_)2 .

A brightness value (B) is also calculated for each triangle. The
actual means of calculating it is not important, only that it exists
and must be included with the rest of the information for each

triangle.

SCAN LINE DETERMINATION

Once the projection calculations have been performed each
triangle will be described by an X and Y coordinate and a range
for each comer and a brightness for the entire triangle. This
information will make up a triangle description record. These
records will be duplicated so that there exists one copy of a
triangle's description record for each scan line that intersects the

triangle's projection onto the screen.

Assume that scan lines are parallel to the X axis. Then the comers
of a triangle with the largest and smallest Y values define the

range of scan lines that the triangle intersects. By re,cursively
dividing this range in half and making records corresponding to
the two halves, we will eventually have a record foreach scan line
in the range, The difficulty arises when this has to be done in

parallel, especially when it is done on a large array of processors,
like the MPP. The number of scan lines that a triangle overlaps
is not the same for all triangles. This means that the rate of
creation of new records is uneven across the processors and some

sort of load balancing must be performed if one is to efficiently
utilize large arrays of processors.

LOAD BALANCING

Load balancing consists of redistributing records across the
processors when some processors contain more than one record.

This is caused by creating more records in one area of the array
of processors than in others. One can do this by moving all the
records to one end of the array of processors, only one record per
processor. Any left over records, if all processors have at least

one record, can be saved in a stack. There several means by
which the records can be moved(compressed) to one end of the

array, but we have found that parallel bitonic sort is very efficient
atdoing this on the MPP. So the use of sort to load balance is what
will be discussed here.

Actually the records are sorted to one end of the array so that there
are two records per processor. Therefore if only half of the

processors have any record in them, then half must have none.

The final step of the load balancing is to move one record from
each processor that has two to a processor that has none by sliding
them halfway across the array. This means that a complete sort
has to be done and the data moved halfway across the array.

Though the sort is efficient, there is no sense in doing a complete
one if one doesn't have to.

Therefore, a scouting step was developed to determine how
much of the sort needs to be performed so that records can be

simply moved to empty processors. Simply implies moving one
record form each processor that has two to a processor that has
none by moving them all the same number of processors away
form their original processor.

For an incomplete sort to be useful at least the following condi-
tion must be true. That forever), group of processors, at least half
of the processors must be empty. These groups must contain the
same number of processors and all records within each group

must be compressed to the same side of the array of processors
of the group. The scout routine determines the shortest sort

necessary to meet these conditions by performing a sort on a set
of flags that represent where the records exist within the array.
The difference from the sort being that after every merge step it
checks to see if the required conditions have been meet.

Scan line determination is merely duplication of records, modi-
fication so that they represent different ranges of scan lines, and
redistribution of records (load balancing). This is repeated until

each record represents only on scan line.

PIXEL DETERMINATION

At this point each record represents a triangle and one scan line
that it intersects. The range along the scan line which represents
the part of the scan line that is covered by the triangle is
determined. Then in the same way that scan lines ranges were
reduced to individual scan lines, so pixel ranges are reduced to

individual pixels. Analogous to scan line determination, pixel
determination involves duplication of records, modification so
that they represent different ranges of pixels, and redistribution
of records (load balancing). Thus, each record will represent a

triangle and a pixel that it covers. From each of these records a
pixel record is created that contains the pixels location on the
screen, the bright of the triangle, and the distance to the triangle
as seen through the pixel.

Z BUFFERING

Many of the pixel records will represent the same pixel, but with
different range and brightness and range values. The Z buffer is
merely a collection of the records for which duplicate pixel
records are eliminated. They are eliminated based on there range

value. Only the pixel record with the smallest range is kept for
each pixel. This is done using a sort computation function, sort
minimum, which will flag the minimum range record for each

pixel during the sort. All untagged records can be mark as
deleted.

328

IMAGE ASSEMBLY

The records in the Z buffer are then used to form a final image.
Techniques for assembling data points into an image were

developed previously in the process of developing algorithms of
point plotting and raytracing on the MPP3.

Since there may not be a Z buffer record for every pixel in the
image, a template image must be created. This consists of a group
ofpixel records that contain a record for every pixel in the image.
Image assembly is a two step operation, pixel value distribution

and image organization. Both of these operation can be done
with sort computation functions. Pixel value distribution is done
with sort distribution. Z buffer records are flagged as containing
valid data and image template records are not. Sort distribution

copies data from Z buffer records to image template records, This
however leaves Z buffer records interspersed with image tem-
plate records. Thus the image can not be displayed in this form
as is. Since image records are flagged as belonging to the image

template and Z buffer records are not, the records can be sort with
the image flag as the major key. This will separate the Z buffer
records from the template records. At the same time the pixel
location can be used as the minor key, which will order the pixels

so that they can be displayed as a raster scan image.

CONCLUSION

This technique is in use on the MPP, which is a 2-D grid of 128

by 128 processors. We are generating 3-D renderings of eleva-
tion data. The data consists of a 512 by 512 grid of points which
is converted into 524,288 triangles (see Color Plate II, p. 694).

These triangles take from 45 seconds to 75 seconds to render,
which is from 6 to 12 thousand triangles a second. Currently we

are working on more efficient means of data movement and or-

ganization to increase its speed.

REFERENCES

1 Dorband, John E., Sort Computation, Frontiers 88 Confer-

ence Proceedings, September 1988.

2 Dorband, John E., Sort Computation and Conservative

ImageRegistration,Ph.D. thesis, Pennsylvania State Univ.,
December 1985.

3 Dorband, John E., 3-D Graphic Generation on the MPP,

Proceedings of the 2nd International Conference on Super-

computing, Vol. II, pg 305-309, 1987.

329

